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We estimate the natural rate of interest (r∗) using a semi-
structural model of the U.S. economy that jointly character-
izes the trend and cyclical factors of key macroeconomic vari-
ables such as output, the unemployment rate, inflation, and
short- and long-term interest rates. We specify a monetary
policy rule and a 10-year Treasury yield equation to exploit
the information provided by both interest rates to infer r∗.
However, the use of a monetary policy rule with a sample that
spans the Great Recession and its aftermath poses a challenge
because of the effective lower bound. We devise a Bayesian
estimation technique that incorporates a Tobit-like specifica-
tion to deal with the censoring problem. We compare and vali-
date our model specifications using pseudo-out-of-sample fore-
casting exercises. Our results show that the smoothed value
of r∗ declined sharply around the Great Recession, eventu-
ally falling below zero, and remained negative through early
2020. Our results also indicate that obviating the censoring
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would imply higher estimates of r∗ than otherwise. We also
extend our results to the COVID-19 pandemic period, intro-
ducing stochastic volatility in the model and dealing with the
massive swings in the data, to find that our estimate of r∗ is
slightly below 1 percent in early 2023.

JEL Codes: C32, C34, E32.

1. Introduction

The natural rate of interest has become a key concept to understand
and characterize monetary policy in both theory and practice. As
pointed out by Summers and Rachel (2019), monetary policymakers
across the globe have highlighted it as a fundamental policy variable
to assess the stance of monetary policy. For instance, Chair Jerome
Powell cites this factor as one of the benchmarks of the Federal
Reserve’s monetary policy decisions:

[W]e set our policy interest rate to achieve our goals of maxi-
mum employment and stable prices. In doing so, we often refer
to certain benchmarks. One of these is the interest rate that
would be neutral—neither restraining the economy nor pushing
it upward. We call that rate “r∗” (pronounced “r-star”). A pol-
icy rate above r∗ would tend to restrain economic activity, while
a setting below r∗ would tend to speed up the economy. A sec-
ond benchmark is the natural rate of unemployment, which is
the lowest rate of unemployment that would not create upward
pressure on inflation. We call that rate “u∗” (pronounced
“u-star”). You can think of r∗ and u∗ as two of the main stars
by which we navigate. In an ideal world, policymakers could
rely on these stars like mariners before the advent of GPS. But,
unlike celestial stars on a clear night, we cannot directly observe
these stars, and their values change in ways that are difficult to
track in real time. (Powell 2019)

In this paper, we postulate and estimate a semi-structural model
of the U.S. economy that allows us to jointly infer time-varying meas-
ures for r∗ and u∗ (denoted r∗

t and u∗
t from here onward) within a

framework in which monetary policy is characterized by an inertial
version of the Taylor (1993) rule. In particular, r∗

t is the time-varying
intercept of the monetary policy rule. As such, it is the value of the
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real interest rate that would prevail in the long run, when the infla-
tion rate is at its target and output is at its potential level (and
the unemployment rate is at u∗

t ). The specification of a policy rule
requires that we account for the effective lower bound (ELB) on the
federal funds rate, as otherwise the relationship between the rule
and the observed short-term interest rate breaks down when the lat-
ter is at the ELB. It is particularly important to explicitly account
for the censoring if one wants, like us, to analyze and estimate a
sample that includes the Great Recession and its aftermath or the
COVID-19 pandemic period.

A comprehensive literature on the estimation of a notion of the
natural rate of interest for the U.S. already exists (see Lubik and
Matthes 2015; Kiley 2020; Cúrdia et al. 2015; Del Negro et al. 2017;
Christensen and Rudebusch 2019; Lewis and Vazquez-Grande 2019;
Johannsen and Mertens 2021, for instance).1 A seminal and orig-
inal work on the estimation of the natural rate of interest for the
U.S. economy is Laubach and Williams (2003) (LW hereafter), which
has been subsequently updated and expanded to other advanced
economies in Holston, Laubach, and Williams (2017) (HLW here-
after). They exploit the theoretical relationship between the real
rate of interest and the growth rate of the economy to estimate r∗

t

based on information from real gross domestic product (GDP), the
inflation rate, and the short-term real interest rate. While their esti-
mator is widely popular, several issues have been raised regarding
their approach by subsequent work (see Beyer and Wieland 2019).
First, a great deal of uncertainty pertains to the estimate of r∗

t .
Second, there is a significant wedge between their output gap esti-
mate and more conventional ones—such as that of the Congressional
Budget Office (CBO)—starting in the early 2000s and widening from
then on (strikingly, the output gap estimate casts the Great Reces-
sion as a rather shallow downturn, historically speaking). Lastly, the
choice of relying on maximum likelihood methods exposes their esti-
mates to the pile-up problem, as the estimated variances of some
shocks may be biased toward zero. This problem remains even if the
model is adequately identified given the data, which may not even
be the case with the original LW model (see Fiorentini et al. 2018).

1We include a literature review in Appendix A.
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We give consideration to these observations in our model. For
instance, we use information from short- and long-run interest rates,
as in Bauer and Rudebusch (2020), to better pin down the evolu-
tion of r∗

t . Similarly, we also introduce an inflation trend and tightly
match its dynamics with that of a measure of survey-based inflation
expectations, which helps discriminate between movements in yields
due to r∗

t and those due to trend inflation. In addition to real GDP
and the inflation rate, we also add information on the unemployment
rate and use it to better identify the output gap through an Okun’s
law, as originally proposed by Clark (1989), as well as to estimate
the natural rate of unemployment. Finally, we adopt a more robust
estimation approach that relies on Bayesian techniques appropriate
for state-space modeling.

As indicated earlier, we exploit the information provided by the
federal funds rate by specifying its evolution as a Taylor (1993) rule
with inertia. However, the binding of the ELB during the Great
Recession and the recovery that followed complicates the use of a
policy rule for any data set that extends beyond 2008. We tackle this
issue by embedding the model with a Tobit-like specification for the
Taylor rule and, hence, a shadow rate. The failure to account for
the ELB can significantly distort the outcomes of the estimation in
terms of both parameters and latent states—r∗

t among them. Our
results indicate that this is the case.

Our approach is similar to but not the same as those in Wu
and Xia (2016), Carriero et al. (2023), and Johannsen and Mertens
(2021). Wu and Xia estimate the shadow rate implied by a discrete-
time multifactor model of the term structure of interest rates,
embedding an analytical approximation adjustment to account for
the lower bound on the observed short-term interest rate. They use
monthly frequency information from (and only from) a set of for-
ward rates of different maturities. Carriero et al. also use rates at
different maturities to estimate shadow interest rates, but without
imposing no-arbitrage conditions, to improve the forecasting perfor-
mance of vector autoregressive (VAR) models. Our approach dif-
fers, for instance, regarding both the breadth of the information
set and the choice of the identifying assumptions and structures.
While our data set includes only a short-term and a long-term matu-
rity yield (the federal funds rate and the 10-year Treasury yield), it
also includes information about macroeconomic variables as well as
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long-run inflation expectations. The combination of a more compre-
hensive information set and macroeconomic structures allows us to
exploit comovements across key macroeconomic variables to possibly
improve on the identification of r∗

t . Johannsen and Mertens also uti-
lize macroeconomic variables to inform their estimate of the natural
rate of interest in addition to interest rates of different maturities.
Like us, they propose a flexible time-series approach that decom-
poses their data as trends and cycles, and that explicitly accounts for
the presence of the ELB by simulating a shadow rate for the periods
when the ELB is binding. However, and in contrast to our methodol-
ogy, they do not infer the output gap based on the structure of their
model and the data, but instead rely on the CBO estimates and
treat it an as observed series. Neither do they estimate u∗

t consistent
with their inference of r∗

t .
A last paper written around the same time as ours and worth

mentioning is Zaman (2021). It is a comprehensive study of a semi-
structural model of the U.S. economy that shares many features with
our paper. The model is estimated with Bayesian methods, includes
information from survey data (to a greater extent than ours), and
specifies the cyclical component of the short-term interest rate using
a Taylor-like policy rule. It also allows for time variation in some
of the parameters, in addition to the variances of the innovations
as done at the end of this paper. One notable difference between
Zaman’s and our approach is that the former does not sample a
model-consistent distribution of the shadow rate at the ELB but
instead relies on the estimate of Wu and Xia (2016) as an observ-
able variable. Another distinction is that we use the 10-year Treasury
yield to directly inform the estimate of r∗

t .
Based on data whose sample ends just before the pandemic

(2020:Q1), our estimate of r∗
t gradually declines starting in the mid-

1980s and enters negative territory in early 2008; r∗
t is estimated to

have hovered around –1 percent since 2012, in line with simple esti-
mates of the short-term real interest rate, before gradually edging
down to –1.7 percent over the last year of our sample. We find that
the shadow federal funds rate would have reached –5.9 percent at
the trough of the Great Recession. Regarding the natural unemploy-
ment rate, we find that it has been steadily declining since 2010,
when it reached 5.6 percent, to a level of 4.5 percent in 2020:Q1.
Our measure of the (time-varying) potential output growth rate has
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declined over time and has been around 1.4 percent per year since
2012. Finally, our estimate of the output gap is somewhat similar to
those from the CBO and the staff of the Federal Reserve Board (and
significantly different from LW and HLW). It peaked at 1.7 percent
in 2019 and declined to about 1 percent at the end of the sample.

Taking advantage of historical data decomposition techniques,
we find that our negative estimates of the natural rate of inter-
est since the Great Recession are based on the information from a
small subset of observations. More specifically, the secular decline in
the long-run interest rate and the persistently low realized inflation
apply enough downward pressures on our estimate of r∗

t for it to
turn negative around the Great Recession and remain below zero
thereafter.

Following the estimation and analysis of our benchmark, we
investigate the relevance and contribution of some of the assump-
tions behind the baseline model. First, we gauge the importance of
allowing for correlated disturbances. In our baseline model, we spec-
ify that the shocks to the short- and long-run interest rates are corre-
lated in order to introduce a conventional monetary policy channel
by which shocks to the federal funds rate translate into changes
to the long-run interest rate, affecting the output gap (through an
IS-curve specification), inflation (through a Phillips-curve equation),
and the unemployment rate (through an Okun’s law relationship).
We also allow correlation between the innovations of the r∗

t process
and those of trend output growth to link these two variables in a
way similar to LW. We find that accounting for the latter correlation
is empirically significant but not so for the former, as the conven-
tional marginal data densities strongly penalize the assumption of
correlation between transitory shocks to the rates.

We also quantify the effects of ignoring the ELB and find that
our estimate of r∗

t is about 35 basis points higher, on average, than
in the model that takes into account the censoring of the policy
rule. Moreover, we assess the impact of two material changes to
our framework: (i) adding the CBO estimate of the output gap to
our set of observable series (in line with Johannsen and Mertens
2021); and (ii) assuming that the federal funds rate follows a sim-
ple local-level model, similar to Fiorentini et al. (2018), rather than
a Taylor rule. Then, we conduct pseudo-out-of-sample forecasting
exercises to determine which specification performs best. The results
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indicate that the baseline specification—which incorporates a Taylor
rule with a shadow rate and an IS curve, and assumes some cor-
relations between key innovations—overall outperforms the other
specifications.

Finally, we reestimate the baseline model with the variances of
the innovations evolving according to a stochastic volatility speci-
fication. This version of the model has a forecasting performance
similar to our baseline specification without stochastic volatility and
implies an evolution of r∗

t above its homoskedastic counterpart, hov-
ering slightly above zero since 2012 and dipping to about –1 percent
at the very end of the sample. We then use this version of the model
to assess the unfolding of r∗

t and other latent variables during the
COVID-19 pandemic, using sample information through early 2023.
The results indicate that the inferred value of r∗

t has rebounded from
around –1 percent at the onset of the pandemic to a level close to 0.7
percent. This result implies that the neutral policy rate (obtained
as the sum of our estimate of r∗

t and that of trend inflation) is close
to 2.9 percent.

2. The Model

Our model of the U.S. economy includes equations for (the log of)
real GDP, denoted as yt, the unemployment rate, ut, the core per-
sonal consumption expenditures (PCE) price inflation rate, πt, the
federal funds rate, it, the 10-year Treasury yield, i10t , and survey
information about long-run inflation expectations, πe

t .

2.1 Interest Rates

We begin our presentation of the model with a description of the pol-
icy rule and the model specification of the 10-year Treasury yield, as
our main innovations mostly relate to and concentrate on this block
of the model.

We assume that the dynamics of the (unconstrained) short-term
interest rate are determined by a monetary policy rule specified as
an inertial version of Taylor (1993):

Rt = ρRt−1 + (1 − ρ) (r∗
t + π∗

t + απ (π̄t − π∗
t ) + αyct) + ηR

t , (1)
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where π̄t is the four-quarter average of the inflation rate, π∗
t is its

trend (assumed to be equal to the policymakers’ inflation target),
and ct is the output gap.2 Here, Rt is the nominal interest rate that
would be set by the monetary authority in the absence of a lower
bound on the target federal funds rate, also called the shadow rate.
In this setup, r∗

t + π∗
t is a measure of the trend policy rate, when

inflation is at its target and the output gap is closed. This level of the
short-term interest rate is called “neutral” or “equilibrium” because
it is neither expansionary nor contractionary (see Yellen 2017). As
a consequence, r∗

t may be viewed as the Wicksellian concept of the
natural interest rate, compatible with stable prices and such that an
increase of the real interest rate above r∗

t contracts economic activ-
ity (see Lubik and Matthes 2015 for an additional discussion). In
addition, r∗

t can also be viewed as a measure of the trend real inter-
est rate, also referred to as the natural real interest rate by Taylor
(1993).

In Taylor (1993)’s proposal, r∗
t was modeled as a constant equal

to 2 percent, close to the then-estimated steady-state growth rate
of trend GDP. The choice of this value was supported at the time
by the average historical value of the federal funds rate. However,
the economic events that have taken place since the publication of
the paper have led monetary policymakers and economists to recon-
sider the view and assumption of a constant level of r∗

t . For example,
Yellen (2017) points out that a Taylor (1993) policy rule with r∗

t at
2 percent prescribes a path for the federal funds rate that is much
higher than the median of Federal Open Market Committee (FOMC)
participants’ assessment of appropriate policy. Yellen mentions that,
because overall growth has been quite moderate over the past few
years, some recent estimates of the current value of r∗

t stand close
to zero, citing HLW. Similarly, Bullard (2018) advocates for a mod-
ernized version of the Taylor (1999) rule in which the natural rate
of interest varies over time. Lower labor productivity growth, a slow
pace of labor force growth, and a stronger desire for safe assets than
in the past would be factors that currently imply a lower equilibrium
real interest rate.

2In addition, απ > 1, αy > 0, ρ ∈ [0, 1), and ηR
t ∼ N(0, σ2

ηR).
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We assume that r∗
t evolves as follows:

r∗
t = r∗

t−1 + ηr∗

t , (2)

with ηr∗

t ∼ N(0, σ2
ηr∗ ). Orphanides and Williams (2002) and Kiley

(2020), among others, also use a random walk specification for r∗
t ,

as in (2). Additionally, and in contrast with LW and several subse-
quent papers by other authors that assume the trend output growth
rate (denoted μt in our paper) loads with unit coefficient on r∗

t ,
we assume that their respective error terms are correlated, i.e.,
corr

(
ηr∗

t , ημ
t

)
= ω, where ημ

t is the shock to the trend output growth
rate.3

The inclusion of a monetary policy rule to improve the iden-
tification of r∗

t has also been investigated in Brand and Mazelis
(2019), which they append to a version of the LW model. However,
they ignore the matter of the ELB binding and the consequences of
this omission for their estimation results. In contrast, we explicitly
account for the ELB and specify the observed federal funds rate,
it, as the maximum between a lower bound, denoted as i, and the
shadow rate, as follows:

it = max{Rt, i}. (3)

Several papers in the literature have built in a measure of the
shadow rate in their estimation of the stance of monetary policy.
Bauer and Rudebusch (2016) and Wu and Xia (2016), for instance,

3In HLW, r∗
t is given by the following specification:

r∗
t = μt + zt,

μt = μt−1 + ημ
t ,

zt = zt−1 + ηz
t ,

where zt is meant to capture the net contribution of the other determinants of
r∗

t beside μt, with ημ
t ∼ N(0, σ2

ημ) and ηz
t ∼ N(0, σ2

ηz ). The correlation between
changes in r∗

t and the trend output growth rate in HLW is given by

corr (Δr∗
t , Δμt) ≡ ω = corr (ηz

t + ημ
t , ημ

t ) =
σημ√

σ2
ημ + σ2

ηz

.

Hence, given the parameter estimates in their paper, ω = 0.63.
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use shadow rate term structure models (SRTSMs) to calculate the
short-term interest rate during the zero lower bound episode of the
U.S. economy. In the SRTSM, the short-term interest rate depends
on latent factors extracted from yields at different maturities or from
a combination of yields and macroeconomic variables. Our setup can
be viewed as one in which the short-term interest rate depends on
latent factors such as r∗

t , the inflation trend, and the output gap
that are obtained from macroeconomic and financial variables.

To the best of our knowledge, Johannsen and Mertens (2021)
is the only study that incorporates the concept of r∗

t within the
framework of a shadow nominal interest rate. The authors impose a
long-run Fisher equation in which the shadow rate trend is decom-
posed into an inflation trend and a real-rate trend that is modeled
as in (2). Even though yields at different maturities are used to esti-
mate the trends and cycles of the model, they do not impose any
no-arbitrage condition.

In the spirit of Johannsen and Mertens (2021), we include in our
set of variables the 10-year Treasury yield, denoted i10t , as in princi-
ple it provides information about the inflation trend and r∗

t beyond
that given by the short-term interest rate. We specify its dynamics
as follows:

i10t = r∗
t + π∗

t + p10
t + c10

t , (4)

c10
t = ψ1c

10
t−1 + ψ2c

10
t−2 + ε10

t , (5)

p10
t = p10

t−1 + ηp10

t , (6)

where ε10
t ∼ N(0, σ2

ε10), ηp10

t ∼ N(0, σ2
ηp10 ), and c10

t is a process
representing any persistent but stationary deviations around the
shifting endpoints r∗

t +π∗
t +p10

t , which could be, for instance, the con-
fluence of term premium and expected future short-run interest rate
dynamics. As evidenced by Bauer and Rudebusch (2020), the term
premium may display nonstationary dynamics even after accounting
for a stochastic trend driving the term structure of interest rates. To
allow and capture movements of that nature for the components of
the 10-year Treasury yield beyond r∗

t , π∗
t , and c10

t , we include a ran-
dom walk component, p10

t , in the specification of i10t . Working with
reduced-form specifications rather than explicitly modeling expecta-
tions and no-arbitrage conditions is not without consequences with
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respect to the status and contribution of monetary policy in the
model. For instance, the 10-year Treasury yield cycle process, c10

t ,
conflates both the cyclical dynamics of the term premium and the
expectations of the short-term interest rate. However, since the term
premium and the identification of the expectational component of
the 10-year Treasury yield are not our primary objects of interest,
we are comfortable with that simplification.

Nonetheless, this specification of the short- and long-run interest
rates does not allow for a direct effect from a conventional monetary
policy shock to the long-term interest rate. In order to introduce such
an effect, we assume a non-zero correlation between the innovation
of the policy rate, ηR

t , and that of the cycle of the 10-year Treasury
yield, ε10

t (see Cochrane and Piazzesi 2002; Nakamura and Steinsson
2018, for instance). Under such a specification, a conventional con-
tractionary monetary policy shock would result in a proportional
change in the long-term interest rate via its cyclical component.4

The inclusion of a long-term interest rate beside the federal funds
rate provides some signal not only about expected future variations
in interest rates of shorter maturity but also about shifts in their
common low-frequency component (r∗

t and π∗
t ). The information

provided by the interest rate of longer maturity can be particularly
valuable when the short-term interest rate is at the ELB.

In the remainder of this section, we outline our setups of real
activity (GDP and the unemployment rate) and inflation, and
describe how r∗

t may influence and be influenced by these sectors
of the economy through their effects on the short- and long-term
interest rates.

2.2 Real GDP and the Unemployment Rate

We characterize real GDP and the unemployment rate using a trend-
cycle decomposition approach, similar to that used by Clark (1989),
as follows:

yt = y∗
t + ct, (7)

ut = u∗
t + θ1ct + θ2ct−1 + υt, (8)

4We also explored an alternative specification in which the error term of the
cyclical component of the 10-year Treasury yield, ε10

t , is a linear function of the
shadow rate shock, ηR

t , plus an i.i.d. disturbance. The results are very similar.
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where (the log of) real GDP is decomposed as the sum of potential
output, denoted as y∗

t , and the output gap, denoted as ct. In turn,
we assume that potential output is a local-linear trend, whereas the
output gap is a stationary AR(2) process influenced by the cyclical
component of the 10-year (real) Treasury yield, as shown below:

y∗
t = μt−1 + y∗

t−1 + ηy∗

t , (9)
μt = μt−1 + ημ

t , (10)

ct = φ1ct−1 + φ2ct−2 + λ1c
10
t−1 + λ2c

10
t−2 + εt, (11)

where ηy∗

t ∼ N(0, σ2
ηy∗ ), ημ

t ∼ N(0, σ2
ημ), εt ∼ N(0, σ2

ε), and the
shocks are independent of each other. Equation (10) allows poten-
tial output to exhibit a (time-varying) trend growth rate, denoted
as μt. This feature is particularly important given the lower-than-
average productivity growth rates observed, in particular, after the
Great Recession. We ensure feedback from monetary policy to eco-
nomic activity and inflation with the presence of the long-term real
interest rate gap as in Roberts (2018). This assumption represents
a departure from LW, who included a short-term real interest rate
gap. The reasons behind this choice are rather straightforward: First,
spending decisions more likely depend on the long-term than on the
short-term interest rate gap; second, monetary policymakers used
balance sheet policies as well as forward guidance to influence long
rates during the Global Financial Crisis (GFC); and, finally, the rela-
tionship between short and long rates may have changed after the
Great Recession.

The unemployment rate in (8) is determined by an Okun’s law
with coefficients θ1 and θ2. The natural rate of unemployment is
given by u∗

t , which evolves according to the following random walk
process:

u∗
t = u∗

t−1 + ηu∗

t , (12)

where ηu∗

t ∼ N(0, σ2
ηu∗ ). The Okun’s law error, denoted υt ∼

N(0, σ2
υ), allows for deviations of the unemployment rate from its

trend and cyclical components.5

5All the disturbances in this section are independent of each other. Some
authors allow for correlated trend-cycle disturbances in a similar setting (see
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2.3 Inflation

We specify the inflation process with the likes of a hybrid Phillips
curve in which inflation expectations are treated as a latent variable
specified as a weighted average of trend inflation, denoted as π∗

t ,
and actual lagged inflation (see Basistha and Nelson 2007). Infla-
tion is also a function of the degree of slack (measured by ct) in the
economy. The specification appears below:

πt = βπ∗
t + (1 − β) πt−1 + κct + ηπ

t , (13)

with ηπ
t ∼ N(0, σ2

ηπ) and where κ is the slope of the Phillips curve;
we ensure long-run neutrality by assuming that β ∈ (0, 1]. Notice
that this approach allows the inflation rate to converge to trend
inflation when the output gap is closed.6

Additionally, we assume that the inflation trend evolves as a ran-
dom walk process, as follows (see Stock and Watson 2007; Aruoba
and Schorfheide 2011; Cogley and Sargent 2015; Mertens 2016, for
example):

π∗
t = π∗

t−1 + ηπ∗

t , (14)

with ηπ∗

t ∼ N(0, σ2
ηπ∗ ). We choose a random walk specification also

because our sample includes the 1970s, which likely has associated
a level of trend inflation much higher than what is implied by the
readings of inflation in the last three decades. Furthermore, in a

Morley, Nelson, and Zivot 2003; Basistha and Nelson 2007, for example).
González-Astudillo and Roberts (2021) allow for correlated disturbances in a
similar setting and find that, even though the correlation coefficient is statisti-
cally significant, the results are broadly similar with respect to a model in which
there is no correlation.

6Ascari and Sbordone (2014) show that when the inflation trend does not
revert to zero in the long run, as is the case in this paper, the New Keynesian
Phillips curve for inflation deviations from a nonzero steady state does not have
the simple form π̂t = βEtπ̂t+1 + κm̂ct, where m̂ct are the firm’s marginal costs,
that we implicitly assume in this paper, but a more general form in which the
coefficients vary over time as a function of trend inflation and an additional term
that describes the discounted value of future marginal costs. We will nonetheless
use our inflation setup, as it is a rather common one in the relevant literature,
while including time-varying coefficients and a more sophisticated structure would
significantly complicate the estimation of our model. We leave the time-varying
coefficients approach to future research.
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similar fashion to Del Negro, Giannoni, and Schorfheide (2015) and
Bauer and Rudebusch (2020), we use information on 10-year-ahead
inflation expectations, denoted as πe

t , to pin down the inflation trend
by assuming the following:

πe
t = π∗

t + et, (15)

with et ∼ N(0, σ2
e). This specification explicitly assumes that sur-

vey long-run inflation expectations are an unbiased estimate of the
inflation trend.

2.4 The Role of Monetary Policy in the Model

The identification of r∗
t in our model setup relies on the feed-

back from monetary policy to economic activity and vice versa. On
the one hand, because of the correlated disturbances between the
shocks to the federal funds rate and the 10-year Treasury yield’s
cyclical component—and because of the feedback from the latter
to the output gap—a conventional monetary policy shock has an
effect on output, the unemployment rate, and inflation. In partic-
ular, a positive correlation coefficient between these two aforemen-
tioned shocks implies that, ceteris paribus, an unexpected increase
in the federal funds rate reduces output and inflation, and increases
the unemployment rate, under the right configuration of parameter
signs.

On the other hand, an unconventional monetary policy shock in
our model—such as forward guidance or asset purchases by the Fed-
eral Reserve—would show, at least partially, through a change in
the cyclical component of the 10-year Treasury yield which, in turn,
will affect output, the unemployment rate, and inflation through its
effect on the output gap. In addition to these explicit features of the
model regarding the effects of monetary policy, by setting απ > 1,
we impose the Taylor principle in our policy rule, which implies
that the estimate of r∗

t is implicitly informed by changes in the fed-
eral funds rate that already have inflation and output stabilization
features.

We would like to conclude the presentation of our model by not-
ing that we do not see our setup as a simple extension of LW and
HLW. Importantly, rather than identifying r∗

t by explicitly linking it
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to the trend growth rate of potential output, we instead rely on infor-
mation from observed interest rates to identify their common real
trend. As shown in Fiorentini et al. (2018), this alternative environ-
ment strengthens identification and prevents the possibility of a lack
of observability, hence significantly reducing filtering uncertainty.

3. Data

We use data on real GDP, the civilian unemployment rate, the PCE
price deflator inflation excluding food and energy, the effective fed-
eral funds rate, the 10-year Treasury constant maturity rate, and the
10-year-ahead PCE price deflator inflation expectations used in the
FRB/US model (available as “PTR” in the public FRB/US pack-
age, a mnemonic that we will use henceforth).7 All the variables
come from the Federal Reserve Economic Data (FRED) database of
the Federal Reserve Bank of St. Louis, except PTR, which comes
from the publicly available FRB/US data set. In the estimation of
the baseline specification described in the previous section, we use
a sample that covers the period 1962:Q1 to 2020:Q1, except for the
federal funds rate, for which we use a sample that starts in 1987:Q3.8

When we assess the COVID-19 pandemic period with our model in
Section 6.3, we extend the sample through 2023:Q1. Appendix C
details the data used.

4. Estimation

We estimate the model with Bayesian methods. The Gibbs sam-
pler alternates sampling between coefficients and latent states. The

7The FRB/US model is a large-scale estimated general equilibrium
model of the U.S. economy that has been in use at the Federal Reserve
Board since 1996. The model is designed for detailed analysis of monetary
and fiscal policies. More details can be found at the following webpage:
https://www.federalreserve.gov/econres/us-models-about.htm.

8Cúrdia et al. (2015) suggest using data from 1987:Q3 because this period
coincides with the date on which Alan Greenspan became Chairman of the Fed-
eral Reserve, and monetary policy is generally viewed as having been relatively
stable and consistent over time since then, and well-approximated by an interest
rate rule. In our state-space model, we assume missing data on the federal funds
rate prior to 1987:Q3.
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explicit modeling of the ELB in the specification of the monetary
policy rule implies that our state-space model is partially nonlinear.
To deal with that situation, we embed the Bayesian estimation of
Tobit models proposed by Chib (1992), called data augmentation,
within the Gibbs sampler.

Broadly speaking, the procedure is as follows: First, given the
(censored) data and initial latent states and parameters, we simu-
late the shadow rate, Rt, for the censored part of the sample from
a truncated (from above) normal distribution with mean given by
ρRt−1 + (1 − ρ) (r∗

t + π∗
t + απ (πt − π∗

t ) + αyct) and variance σ2
ηR .

This is the data augmentation step suggested by Chib (1995). Sec-
ond, we use the set of augmented data and obtain simulated states
using the Durbin and Koopman (2002) simulation smoother from
the state-space model. By construction, the sampled states deliver
a shadow rate below the ELB. Third, with the sampled states, we
obtain draws of the parameters of the model using the conventional
independent normal-inverse-gamma posterior scheme, including for
the equation of the shadow interest rate. Finally, with the newly
sampled parameters and states, we simulate the shadow rate as
indicated before and repeat the steps.9 Appendix D describes the
sampler in more detail. The choice of prior distributions appears in
Appendix E.10

All told, following a burning-in set of 100,000 draws, we sample
200,000 observations, which, after thinning every 100th draw, gives
us 2,000 draws to approximate the posterior distribution. The results
have been checked for convergence and absence of autocorrelation of
the posterior draws.

5. Estimation Results and Analysis

In this section, we present and discuss the estimation results of our
benchmark model.

9Monte Carlo simulations confirm that this procedure produces unbiased tra-
jectories of the latent variables.

10The inclusion of a Tobit step in our sampler is theoretically equivalent to
but more efficient than the rejection sampling approach originally proposed by
Johannsen and Mertens (2021). Carriero et al. (2023) also propose a similar
sampler to generate the censored values.
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5.1 Parameter Estimates

Key statistics of the model parameters’ posterior distribution appear
in columns 3 and 4 of Table E.1 in Appendix E. The posterior mean
estimates of the cycle imply that it is highly persistent with hump-
shaped dynamics. The Okun’s law coefficients indicate a quantita-
tive relationship between the output and unemployment gaps that is
slightly less than the conventional 2-to-1 scaling. The Phillips curve
coefficients imply a somewhat weak link between actual inflation
and its trend, and a slope (with respect to the output gap) with a
68 percent credible interval between 0.05 and 0.09, which indicates
a relatively weak response of inflation to the output gap compared
with historical estimates, as documented by Blanchard (2016).

The posterior mean estimates of the monetary policy rule coef-
ficients imply a relatively high degree of persistence in the rule—
although, at 0.7, lower than the usual persistence coefficient of 0.85
(see Board of Governors 2018)—and sensitivities to inflation and the
output gap that are consistent with the literature (and that obey the
Taylor principle). For the r∗

t process, the estimate of the variance of
its perturbation implies a standard deviation around 0.28 percent,
in the vicinity of the estimate in Kiley (2020).11

The IS curve coefficients that link the cyclical components of the
long-term interest rate and output have the expected overall nega-
tive sign. They imply a long-run sensitivity of the output gap to the
interest rate gap around –7.8. According to the exercises and calcu-
lations presented in Roberts (2018), the magnitude of our model’s
response to changes in interest rate conditions lies between those
of macroeconomic models that are usually considered as having
lower interest rate elasticity (e.g., the FRB/US model) and those
with higher interest rate elasticity like standard dynamic stochastic
general equilibrium (DSGE) models (e.g., Smets and Wouters 2007).

The correlation coefficient between output growth and inter-
est rate trend shocks is 0.50, with a 68 percent credibility interval
between 0.21 and 0.75, which includes the implied estimate from

11Kiley (2020) points out that the data provide little information to estimate
the variance of the r∗

t shock in his version of the LW model. We find that the
posterior distribution of this parameter is significantly different than its prior, as
can be seen in Appendix F.
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Figure 1. Results of the Baseline Model

Note: Shaded vertical areas indicate NBER recession periods. Smoothed esti-
mates are reported, except for the r∗

t estimates of other studies in the bottom
right panel, which are the filtered estimates.

HLW. Finally, the correlation coefficient between the shocks to the
shadow interest rate and the cyclical component of the 10-year Trea-
sury yield has a posterior mean equal to 0.05 with a credible set that
includes zero with 68 percent probability.12

5.2 Latent Factors Estimates

The results of the estimation with regard to the output gap, the
growth rate of potential output, the natural unemployment rate, and
r∗
t appear in Figure 1. Our estimate of the output gap in Figure 1A

12With this parameter configuration, an unexpected increase of 1 percentage
point in the shadow interest rate—keeping all the other elements of the rule
constant—causes a decline in the cyclical component of GDP of about 0.15 per-
centage point at the trough and a decline of 3 basis points in inflation. Impulse
response functions after shocks to the cyclical component of the 10-year Treasury
yield and to the output gap appear in Appendix H.
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resembles those of the CBO—which is implied from their calcula-
tion of potential output—and the staff of the Board of Governors
of the Federal Reserve System. Our estimate declines during NBER
recession periods, but the magnitudes of the peaks and troughs can
occasionally differ. For example, both the Board’s staff and the CBO
estimated an output gap around –6 percent during the Great Reces-
sion, whereas our estimate is close to –8 percent. Nonetheless, these
three estimates imply sweeping output losses relative to its poten-
tial. In contrast, the output gap from LW casts the Great Recession
as a relatively shallow one. At the end of the sample, the available
estimates for the CBO and LW have turned negative whereas our
posterior mean estimate has fallen by almost a full percentage point,
but remains in positive territory.

Our estimate of the potential output growth rate, shown in
Figure 1B, has declined over the sample period, just as that of LW.
However, our estimate initiates a decline toward the end of the 1990s
that is more pronounced than shown by their estimate. Our estimate
stabilizes around 1.4 percent after 2012, about 0.9 percentage point
below that of LW. The inclusion of data through 2020:Q1 also results
in our smoothed estimate ticking down toward the end of our sample.

The natural unemployment rate estimate in Figure 1C shows
some variation over time, fluctuating between 4.5 percent at the end
of the sample and 7 percent during the 1970s; our estimate reached
5.6 percent during the Great Recession. We compare our measure
with that from the CBO, which is lower in general throughout the
sample. In 2020:Q1, the CBO estimate stands at 4.3 percent, within
the 68 percent credible interval of our model, which covers the range
3.9–5.0 percent.

Finally, Figure 1D depicts our smoothed estimate of r∗
t along

with filtered estimates of other models in the literature and the
smoothed estimate from LW. From the plot, it is apparent that in
the period 1962–82, the estimates that closely follow the approach
of LW—in which r∗

t is explicitly linked to the growth rate of poten-
tial output (LW, HLW, and Lewis and Vazquez-Grande 2019)—are
markedly above those that do not follow it (among those, our esti-
mate). Higher-than-average economic growth during the 1960s and
1970s entails a similar pattern for the trend output growth rate,
which, in turn, is more likely to hold for the equilibrium interest
rate, unless the link is diminished through the contribution of the
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Figure 2. Estimates Related to the
Short-Term Nominal Interest Rate

Note: In our estimation, data on the federal funds rate are treated as missing
prior to 1987:Q3.

nongrowth component and at a price, statistically speaking. Our
model, which only imposes a relationship between these two vari-
ables through correlated error terms, shows that the data prefer
somewhat diverging patterns for the two trends over the first two
decades of the sample. Our results suggest that the addition of a non-
growth rate component, as in LW and Lewis and Vasquez-Grande,
does not adequately account for the divergence implied by the data.
Later in the sample, all the estimates in the existing literature trend
down and have roughly stabilized in the last several years of our
sample; they range between 0 percent and a bit above 2 percent in
2020:Q1. In contrast, our estimate shows a more pronounced down-
ward trend that has put its 68 percent credibility interval in negative
territory in recent years; our estimate of r∗

t is –1.7 percent at the
end of the sample. To the best of our knowledge, only four estimates
in the literature reach negative territory: that in Kiley (2020) does
so after the Great Recession and (not shown in the figure) those of
Brand and Mazelis (2019), Lopez-Salido et al. (2020), and Williams,
Abdih, and Kopp (2020).

The estimated shadow-trend (or equilibrium) and federal funds
rates (whenever the ELB binds) are shown in Figure 2 (recall
that the shadow-trend or equilibrium federal funds rate is given by
r∗
t + π∗

t ). Starting in 1987:Q3, when data on the federal funds rate
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enter the model, the equilibrium federal funds rate is shown to be
smoother than its observed counterpart, with the former above the
latter in the later stage of expansions and below during or imme-
diately after recessions. Also, the estimate of the shadow interest
rate reaches –5.9 percent at the trough of the Great Recession. The
decline in the equilibrium federal funds rate accelerates a bit at the
end of our sample, and its estimate is slightly above zero with a 68
percent credibility interval between –0.6 percent and 1.3 percent at
the beginning of 2020.

5.3 Why Has the Estimate of r∗
t Been Negative

since the Great Recession?

Our estimate of the natural rate of interest is negative during the
Great Recession and since then. This result is in contrast with most
of the alternative estimates from the literature shown in Figure 1D.
This difference seen in our results, as well as in the handful of stud-
ies mentioned in the previous section, warrants the question: What
aspects of the data and models’ structures drive the natural rate
of interest negative around the 2008–09 recession and keep it below
zero thereafter?

A feature common to all the studies that have estimated a neg-
ative r∗

t in recent decades is that, in contrast to LW and HLW, the
Phillips curve used in the estimation assumes that current inflation
is anchored to its trend and, more importantly, the latter is approx-
imated with some measure of long-term inflation expectations. For
instance, Lopez-Salido et al. (2020) use the Consensus Economics
10-year-ahead CPI inflation forecast extended back to 1961:Q2 by
Blanchard, Cerutti, and Summers (2015). Kiley (2020) and
Williams, Abdih, and Kopp (2020) use survey measures of long-
run inflation expectations, as we do in this paper. Lastly, Brand and
Mazelis (2019) use an inflation trend equal to 2 percent after the
early 1990s; it is also the value of the inflation target in their Taylor
rule.

Figure 3 shows the contributions of the observed variables,
grouped in three categories, to the path of the estimated natural rate
of interest.13 Its examination suggests that the fluctuations in our

13This figure details the results of a historical data decomposition—i.e., a cal-
culation of the contribution of each observed variable to the latent variables of the
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Figure 3. Historical Data Decomposition
of the Estimate of r∗

t

Note: The contributions of GDP and the unemployment rate (GDP + Unem-
ployment rate) have been added together. The same is true for the inflation rate
and PTR (Inflation + Inflation expectations), and for the federal funds rate and
the 10-year Treasury yield (Interest rates). The gray vertical line indicates the
period from which information on the federal funds rate was added to the system.

estimate of r∗
t are primarily coming from interest rate fluctuations

(in particular, the 10-year Treasury yield), suggesting the impor-
tance of including these series in the information set and assuming
roles for them in the economic model. We also observe that the
substantial interest rate rise in the late 1970s and early 1980s only
translated into a moderate rise in the natural real rate of interest, as
these upward movements were in large part offset by similar increases
in actual and expected inflation (as seen through their negative con-
tributions). The decomposition shows that the gradual decline in
the natural rate that began around the new millennium is primarily

transition equations of the model’s state-space system. This kind of decomposi-
tion was proposed, building on the original work of Koopman and Harvey (2003),
by Sander (2013) and Andrle (2013); these papers explain how to compute its
elements by exploiting the linear structure of the model, as each observable vari-
able has an independent effect on the smoothed estimates of a latent variable. We
refer the readers interested in the more technical aspects of the decomposition to
these papers as well as Chung et al. (2021). Notice that these results are obtained
using the posterior mean of the parameters.
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explained by the decline in interest rates (in particular, the 10-year
Treasury yield), with a small offset from (low) inflation rates (as
seen through their positive contribution).14

These results are consistent with the mechanism presented in
Lopez-Salido et al. (2020) explaining why a negative inflation gap
can contribute to a lower-than-otherwise-estimated r∗

t : All else equal,
a lower inflation gap requires a lower output gap because of the link
enforced by the Phillips curve.15 In turn, our version of the IS curve
equation compels a decline in the natural rate of interest to push
up the interest rate gap for a given observed long-term real interest
rate to account for the lower output gap on the left-hand side of
the equation. Under these considerations, the key role played by the
10-year Treasury yield data in driving the dynamics of the natural
interest rate is not really surprising, as our notion of the interest
rate gap is defined for said long rate. It is worth noting that the
policy rule in our model works as a counterweight to the aforemen-
tioned mechanism (which is absent from Lopez-Salido et al. 2020)
as, everything else equal, negative inflation and output gaps compel
an upward revision to the estimate of r∗

t in the same period.16

5.4 The Role of Particular Structures of the Model

The semi-structural model approach of this paper has both benefits
and shortcomings. On the one hand, it provides flexibility in fitting
the data and allows the modelers to choose selectively the economic
relationships that will be used to impose structures on the data. On
the other hand, the specific nature and validity of and motivations
underlying choices are not always easy to establish and agree upon
(e.g., one’s preferred choice may be called “ad hoc” by another).
Moreover, the imposition of economic relationships may still par-
tially rely on reduced-form dynamics. For instance, we have allowed

14Appendix G shows the historical data decomposition for the output gap.
15The inflation gap is defined as actual inflation minus long-run expectations

of inflation (PTR), which is negative on average during and following the Great
Recession, as seen in Appendix G.

16The relationship between r∗
t and the gaps arising from the rule is not as

straightforward as that from the channel highlighted by Lopez-Salido et al. (2020)
because it is not the level but a quasi difference of the former (i.e., (1 − ρ)r∗

t )
that is a function of the latter.
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Figure 4. Estimated r∗
t Comparison across

Different Parameter Assumptions

for correlation between the shocks to r∗
t and trend output growth,

μt, in order to link r∗
t to factors such as productivity or population

growth. Similarly, we introduce a role for conventional monetary
policy by assuming that the shocks to the transitory components of
Rt and i10t are correlated, which is a reduced-form substitute for an
explicit modeling of the expectational component of the long-term
interest rate. Perhaps more importantly, we introduce an IS-type
relationship in which the cyclical component of the long-term real
interest rate affects the cyclical component of output. How does each
of these features affect the estimate of r∗

t and how does a model fit
comparison discriminate among them?

Figure 4A shows a three-way comparison in which our baseline
model estimate of r∗

t is contrasted against two other estimates in
which the correlation coefficients we previously mentioned are set
to zero. As it can be seen, these two restrictions on the correlations
of the innovations have negligible effects on the estimated path of
r∗
t compared with the baseline path. However, a marginal likelihood

comparison across the three specifications indicates that the data
strongly prefer a model without correlated interest rate disturbances,
but with correlation between output growth and real interest rate
trends.17

Figure 4B shows a comparison between the estimate of r∗
t

obtained with our baseline specification and that of a model that

17The baseline model achieves a marginal data density equal to −652.9, the
model without correlation between ηR

t and ε10
t , one equal to −631.6, and −677.5

for the model without correlation between ηR
t and ε10

t , and between ημ
t and ηr∗

t .
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Figure 5. Results of the Uncensored Model

Note: Shaded vertical areas indicate NBER recession periods. Smoothed esti-
mates are reported.

assumes zero correlation between the aforementioned pairs of shocks,
like the red line in Figure 4A, as well as the absence of an IS rela-
tionship. (We refer to this latter model as the plain model.) Judging
by the overlapping of the confidence sets, it is likely that the two
estimates of r∗

t may not be different between these two specifica-
tions. However, it is noticeable that, on average, the estimate of the
baseline model is higher than that of the plain one before the onset
of the GFC, whereas the former is lower than the latter after 2008.
Moreover, a comparison of the marginal data densities indicates that
the data strongly prefer the model with an IS-type relationship.

5.5 The Role of Censoring

In our model specification, we incorporate the fact that the federal
funds rate was censored from below in the aftermath of the GFC.
As it could be easily foreseeable, ignoring censoring will in all like-
lihood distort the estimates of the policy rule, including the values
of r∗

t . We find that while all the parameters of the model experience
changes when we do not incorporate censoring, the reaction of the
federal funds rate to the output gap changes substantially, reduced
to half of the original estimated coefficient. The rule also becomes
more persistent and the shocks are more volatile. Also as expected,
the estimate of r∗

t is higher in the specification that ignores censor-
ing of the federal funds rate, as can be seen in Figure 5, which also
shows the neutral federal funds rate in this case.
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Despite the estimate of r∗
t being within the confidence set of

the estimate that considers censoring for most of the sample period,
the two estimates likely differ shortly after the onset of the GFC,
with the former (ignoring censoring) higher and in positive terri-
tory compared with the latter (that takes censoring into account);
the difference averages about 1 percentage point between 2011 and
2013. In addition, notice that the estimated neutral federal funds
rate is higher than that shown in Figure 2. These results suggest
that estimating the natural rate of interest using real interest rate
data computed with information from the (censored) federal funds
rate, as in LW, would likely overestimate r∗

t .

6. Model Evaluations

In this section, we conduct a formal comparison of our model with
other model specifications to gauge what features make our setup
beneficial. To that end, we evaluate the out-of-sample forecasting
capabilities of each alternative specification because the alternatives
do not always include the same set of observable variables, making
the marginal data density approach more cumbersome.

6.1 Two Alternative Model Specifications

The approach used so far to treat the output gap as we do any other
latent variables, i.e., determined jointly by the model and data, pro-
vides flexibility and delivers estimates that reflect the structures
of the model from a probabilistic perspective. However, estimation
results may, as with any model, be distorted by misspecifications. It
is reasonable to assume that differences in the path of the output
gap would lead to different dynamics in the natural rate of inter-
est given the tight connections between the output and interest rate
gaps implied by our model’s IS curve and policy rule. To explore this
issue, we estimate a version of the model that includes the output
gap series derived from the CBO’s estimate of potential output in
the data set, in a fashion similar to Johannsen and Mertens (2021).
The CBO’s estimate of the output gap is a well-recognized measure
that is not only model-based but also calculated using a wider set
of information than ours as well as economic judgment.
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Figure 6. Estimated r∗
t under Alternative Specifications

The estimated r∗
t associated with this model specification

appears in Figure 6 along with that from our baseline model. Con-
ditioning the estimation of the model on the CBO measure of the
output gap yields an estimate of r∗

t about 1 percentage point higher
than in our baseline specification, on average. Most of this differ-
ence reflects a similar shift in the measures of the output gaps (our
estimate of the output gap is about 0.8 percentage point higher, on
average, than that of the CBO, as can be seen in Figure 1A). In
particular, the estimate of r∗

t using the CBO output gap is posi-
tive during the last several years of the sample, averaging about 0.6
percent since 2015. In addition, the posterior mean estimates of the
Taylor rule coefficients are close to the upper bound of the 68 per-
cent credible sets of the original specification that did not include
the CBO output gap.

Furthermore, the CBO estimate of the output gap entails a more
volatile natural rate of unemployment (about four times the volatil-
ity of the baseline). For instance, it increases above 8 percent (com-
pared to 6 percent in the baseline) during the Great Recession,
whereas it settles at 3.5 percent at the end of our sample, 1 per-
centage point below the estimate of our baseline model. Finally, the
long-run sensitivity of output to the interest rate (given by the IS
relationship) is half that of the baseline specification. These results
evidence that replacing the output gap estimation is not innocuous
in our model.
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The other specification we examine has been proposed by Fioren-
tini et al. (2018): they show how the precision of the estimates of
r∗
t in the HLW model deteriorates greatly when the IS and Phillips

curves are close to being flat. They propose to estimate r∗
t using

information on the ex post real interest rate only, specifying a local-
level model in which the trend, r∗

t , follows a unit root and deviations
of the real interest rate from the trend are stationary. We imple-
ment their proposal by replacing the policy rule specification of our
baseline model with the following equation:

Rt = r∗
t + π∗

t + cR
t ,

where cR
t is a stationary AR(2) process and Rt is still uncensored.18

In this way, we can assess the effect of assuming a policy rule speci-
fication for the federal funds rate on our estimate of r∗

t .
This setup is similar to that in which one obtains the real inter-

est rate by subtracting a measure of long-run inflation expectations
from the federal funds rate and uses that information in the local-
level model, in the spirit of Lopez-Salido et al. (2020). However, in
both Fiorentini et al. (2018) and Lopez-Salido et al. (2020) as well as
in HLW, the real interest rate is obtained from a censored nominal
interest rate, which could be analogous to having used the specifica-
tion in this paper that ignores censoring and that delivered a higher
estimated r∗

t than when censoring was taken on board—our baseline
specification.

The results in Figure 6 indicate a much lower estimate of r∗
t

than the baseline specification in this case, except during the last 10
years of the sample, in which both of them average a level close to
–0.8 percent. Of note, the r∗

t estimate fluctuates between 1 percent
and 2 percent before 2000, when it starts to decline and becomes
negative at the same time as our baseline estimate, at the onset of
the GFC. In addition to a consistent downward shift in the level
of the series, the estimate of r∗

t under the local-level specification
also displays a much smoother path compared to that of the base-
line model. The characterization of the cyclical dimension of the real

18We continue to assume that the shocks to transitory components of both
interest rates are correlated as well as the shocks to the output trend growth
and r∗

t .
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short-term interest rate, cR
t , as a latent variable, unattached to the

rest of the model’s variables and explained solely by a single sto-
chastic shock, appears to give the model ample leeway to capture
most of the cyclicality observed in the real rate. In contrast, the pol-
icy rule in our baseline specification ties its cyclical component to
macroeconomic factors (i.e., the inflation and output gaps), linking
the fluctuations of the real short-term interest rate at business fre-
quencies to those of other key determinants of the economy. Which
specification is preferable? The next section attempts to shed some
light on this question by performing a model evaluation exercise.

6.2 Pseudo-out-of-Sample Forecasting Exercises

In order to broadly evaluate the model specifications shown so far, we
estimate them and generate projections in a pseudo-real-time fore-
casting environment. More precisely, we begin with the initial sample
spanning the period 1962:Q1 through 2002:Q3, estimate the models
and, jumping off from the last quarter of the aforementioned sample,
produce one- to four-quarter-ahead forecasts for all the observable
variables, using every draw from the posterior distribution of the
parameters. We then roll forward the sample by adding one quar-
ter at a time and reestimate the model, producing forecasts of all
the observable variables for every posterior draw once again. We
continue adding one period at a time until 2019:Q1 to produce the
forecasts one to four quarters ahead. Table 1 shows the continuous
ranked probability scores (see Gneiting and Raftery 2007) of the
one- and four-quarter-ahead forecasts for the unemployment rate,
the inflation rate, and the federal funds rate.19

The results show that, broadly speaking, out of sample the base-
line specification (line 1) outperforms the alternatives considered so
far in the paper (lines 2–5 and 8–11). For instance, the model that
ignores censoring (lines 2 and 8) forecasts the unemployment and
federal funds rates worse than our original specification. The model
that uses the CBO output gap (lines 4 and 10) is able to forecast
inflation better than our baseline model, but its performance worsens
with respect to the unemployment and federal funds rates. Finally,

19We consider 1,000 draws from the posterior distribution after burning in 6,000
draws and thinning every 12th draw; that is, we use a total of 18,000 draws.
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the model that omits a policy rule specification for the federal funds
rate—and uses a local-level model in its place—(lines 5 and 11) is
overall worse than the baseline specification, and the worst among
the alternatives to forecast the federal funds rate.

We also investigate the out-of-sample forecasting performance of
a model that does not include interest rates, either short or long, as
observable variables (lines 3 and 9). The results show that the ability
of the model to forecast inflation deteriorates significantly compared
with that of the models that do include an interest rate block.20

6.3 A Model with Stochastic Volatility: Parsing the
COVID-19 Pandemic Period

Our sample includes episodes of high inflation, output, and interest
rate volatilities that could influence how the Durbin and Koopman
(2002) simulation smoother parses the information of the data to
obtain estimates of the parameters and latent variables of our model,
including r∗

t . Up to now, we have assumed a constant variance in
the innovations, as it facilitates the comparison with models from
the existing literature and allows us to disentangle more easily the
role that each assumption of our model specifications plays in our
estimate of r∗

t .
However, a growing number of recent additions to this literature

have rejected a homoskedastic specification for one that allows for
time variation in the variances of the innovations, usually with a
stochastic volatility (SV) setup (see Johannsen and Mertens 2021
and Zaman 2021 for a few examples). We now explore the implica-
tions of allowing for SV on key aspects of the model’s inferences and
estimates.

To account for the possibility of time-varying volatility, we spec-
ify the variance of each error term in the model as follows:

σ2
t = exp(ht),

ht = ht−1 + ηh
t , ηh

t ∼ i.i.d. N(0, σ2
ηh),

h0 ∼ N(μ0, σ
2
0).

20In Appendix J we show real-time estimates of the output gap and r∗
t for the

models that include an interest rate block. The results show that the real-time
estimate of the baseline model is reasonably close to its smoothed counterpart.
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We use the mixture simulator proposed by Kim, Shephard, and Chib
(1998) to estimate the parameters and latent states of the model with
SV, using the same sample information as in the previous sections.21

Figure 6 shows that modeling SV leads to an upward shift in
the estimate of r∗

t . One can observe that the magnitude of the
difference between the estimates with and without SV is starker
during episodes of higher inflation. There is a well-recognized liter-
ature (see Stock and Watson 2007, for example) on the estimation
of the processes underlying inflation with SV and how the estimates
of the variances of the innovations are substantially larger during
the inflationary episodes spanning the late 1970s and early 1980s.
The nature of our filtering procedure entails that observations dur-
ing these episodes are given less weight (the signal-to-noise ratio is
smaller during these episodes due to the larger variances) than under
a structure with smaller (and constant) estimated variances. Framed
in terms of the data contributions presented in Section 5.3, the off-
set from the inflation data on the contributions from the rising 10-
year Treasury yield in the late 1970s and early 1980s is now smaller
compared with that of the model without time-varying volatility.22

Consequently, the high inflation and interest rate episodes in the
late 1970s and early 1980s are now consistent with higher levels of
the r∗

t estimate. All in all, our estimate of r∗
t with SV stands close

to –1 percent in early 2020 after hovering slightly above zero in the
decade before.

Table 1 (lines 6 and 12) shows the forecasting performance of
this baseline model with SV. The addition of SV helps predict the
unemployment and inflation rates better than the baseline specifica-
tion (which was the overall best specification so far), but it worsens
the federal funds rate predictions. The differences are rather small

21We assume that μ0 for each shock is equal to the log of the posterior mean
estimate of the variance of the respective shock of the model without SV, and
that σ2

0 = 1 for all the shocks. The prior distribution for σ2
ηh in each shock is

inverse-gamma with mean equal to one-hundredth the value of exp (μ0) and shape
parameter equal to 3.

22The contribution from the nominal interest rates may also be more muted
than in the baseline model during the more volatile episodes but, ultimately, what
matters is the relative decline in the contributions, i.e., as long as the reduction
from the contribution of the inflation data is larger (in absolute value) than that
of the interest rates from allowing for time-varying volatilities, the changes in the
estimate of r∗

t from rising rates will be larger.
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and hence both versions perform similarly. Because neither of the
two specifications (baseline with and without SV) dominates the
other, according to this measure of performance, both can be consid-
ered equivalently valid representations of the data over the historical
sample ending in 2020:Q1 from this perspective.

The recent COVID-19 pandemic, with the exceptional swings
observed in key macroeconomic data, constitutes an episode for
which simply relying on constant variances based on pre-pandemic
samples is in all likelihood misguided. After all, the magnitude of
these changes is the primary rationale behind ending the sample
with the first quarter of 2020, and a feature that has motivated an
all-new literature on how to deal in practice with these recent excep-
tional movements in the data. Carriero et al. (2022), Schorfheide and
Song (2021), and Lenza and Primiceri (2022) are examples of such
new literature.

Carriero et al. (2022) note (in a VAR context) that the popular
specification of SV may not be entirely congruent with the unique-
ness, magnitude, and short-livedness of the variations in the data
during the pandemic. They evaluate the model fit of extensions of
the SV specification such as an outlier-augmented SV setup (SVO
hereafter) and find that it performs better than SV alone or an SV
specification that treats the pandemic data as missing, according to
in-sample and prediction metrics. However, both Schorfheide and
Song (2021) and Lenza and Primiceri (2022) argue that the miss-
ing data approach, instead of the outliers treatment of the pandemic
data, can also be a valid alternative in empirical work mainly because
of its simplicity and because of its adequacy for either forecasting
(in the former paper) or parameter estimation (in the latter).23

Because the aim of this section is not to determine the best model
over some set of candidates, but to explore the latent variables esti-
mates of our proposed model through the pandemic episode, we opt
for the missing data approach, using the model specification with
SV, as its implementation is straightforward and its computational

23Lenza and Primiceri (2022) assume that the pandemic induced a common
shift in volatility in a constant-variance Bayesian VAR instead of having one SV
process for each of the perturbations of the model, which is a somewhat standard
assumption in the literature. Carriero et al. (2022) find that making the outlier
common to all the series seems to provide no advantage and that said approach
only registers outliers during the COVID-19 pandemic.



34 International Journal of Central Banking Forthcoming

cost, marginal. We take advantage of the state-space representa-
tion of our model, as the Kalman filter allows us to account for the
missing values using those implied by the (random draws of the)
dynamics of the model itself.24

To parse the pandemic sample with our model, we first start
with the baseline specification with SV estimated over the (pre-
pandemic) sample previously described and its posterior draws of
parameters. Next, to identify the dates to treat as missing data, we
assume that any observation that is beyond a threshold factor of 10
of the interquartile range is an outlier, meaning that only real GDP
observations and the unemployment rate for 2020:Q2–Q3 are flagged
for omission. The pandemic observations for the other data series are
not sufficiently unusual at a quarterly frequency to be discarded.25

Finally, for each set of parameters drawn from the posterior distri-
bution, we hold them fixed and draw the model’s latent variables,
including the SV processes, with the Durbin and Koopman (2002)
simulation smoother and the Kim, Shephard, and Chib (1998) mix-
ture simulator sequentially, using data from 1962:Q1 to 2023:Q1. In
that process, we make sure the latent states satisfy the ELB for the
federal funds rate starting in the second quarter of 2020 through the
fourth quarter of 2021, i.e., that the shadow federal funds rate is
below the ELB.26

Figure 7A shows that the model’s output gap reaches –2.5 per-
cent at the onset of the pandemic in 2020:Q2 and bottoms out at
–4.5 percent in the second half of 2020, a much less drastic decline
compared with that of the CBO for instance, which falls to as much

24One disadvantage of the missing observations approach compared with the
SVO specification is that the former is unable to account for the possibility of
future outliers. However, as our objective is not forecasting but instead parsing
the data, the advantages of the SVO approach over the missing data one may
not be as significant.

25Carriero et al. (2022) carry out their analysis at the threshold factors of 5
and 10 and eventual settle for the former. We picked a factor of 10 rather than
5 because the latter entailed excluding the unemployment rate observation until
the end of 2020, which seems at odds with the conventional appraisal of the
data over the pandemic. The use of quarterly observations rather than monthly
will likely bias toward overomitting information and, as a result, we selected the
conservative factor of 10.

26The SV estimates for each of the perturbations of the model appear in
Appendix I.
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Figure 7. Parsing of the COVID-19 Pandemic Period

Note: Shaded vertical areas indicate NBER recession periods. Smoothed esti-
mates are reported.

as −11 percent. The model does not infer a spike in the natural
unemployment rate either (Figure 7B) during these volatile periods.
While these results may be expected given the removal of the data
with the largest movements, they also indicate how the responses
of the other observable variables to the factors corresponding to the
pandemic have been unexceptional: none of the movements in infla-
tion and interest rates in mid-2020 indicate a large decline in the
cyclical position of the economy. We also notice that our output gap
estimate rapidly aligns with that of the CBO in the recovery phase,
but has diverged in the last year: our estimate indicates that output
is almost 1 percent above potential in early 2023 whereas the CBO
estimates that it is about 0.7 percent below.

Figure 7C shows that the estimate of r∗
t has rebounded from its

negative level of about –1.25 percent at the onset of the pandemic
to about 0.7 percent in early 2023, although the 68 percent credi-
ble set still includes zero, as this was the norm during the several
years before the pandemic. As a result of the mild response of the
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output gap as the pandemic unfolds, the decline in the shadow rate
is also relatively mild, reaching about –4.5 percent at the end of
2020 (Figure 7D). The equilibrium or trend federal funds rate hov-
ered around 1 percent during the pandemic ELB episode and stands
at 2.9 percent in early 2023, indicating that the current stance of
monetary policy is contractionary.27

7. Conclusion

In this paper, we formulated and estimated a semi-structural model
of the U.S. economy that provides measures of the natural rates
of unemployment and interest, which can inform the decisions of
monetary policymakers. Our model also provides an estimate of the
output gap that is roughly consistent with institutional and judg-
mentally driven estimates, such as those produced by the CBO or
the Federal Reserve Board’s staff, in contrast to the estimates of LW
and HLW.

We note that introducing censoring in the monetary policy rule
lowers the estimate of r∗

t compared with a model in which censoring
is ignored. This consideration also implies a lower neutral federal
funds rate, which is a benchmark recommended by economic theory
to evaluate the stance of monetary policy.

We also find that movements in the long-run interest and infla-
tion rates are the most important contributors to the downward
secular trend in our r∗

t estimate, especially since the Great Reces-
sion. Lastly, an estimation of the model incorporating stochastic
volatility shows that r∗

t may have drifted significantly below zero
during the COVID-19 pandemic and has increased to 0.7 percent in
the recent past, above the pre-pandemic norm, which was close to
zero.

27Appendix I shows the results for the case in which no observations are omit-
ted, i.e., a straight read from our baseline model with SV. In that case, the
response of the output gap fully reflects the swings in the data and output is
estimated to have fallen about 20 percent below potential, almost twice as much
as the CBO’s estimate. Interestingly, and probably because of the quick rebound
in real GDP and decline in the unemployment rate, the economic trends of inter-
est in this paper (r∗

t and u∗
t ) do not change much with respect to the results in

Figure 7.
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Appendix A. Literature Review

Laubach and Williams (2003) (LW hereafter) and, subsequently,
Holston, Laubach, and Williams (2017) (HLW hereafter) are semi-
nal works on the estimation of natural rates of interest for the U.S.
economy and, in the latter case, other advanced economies. One key
element of their identification strategy is the relationship between
the growth rate of the economy and the real short-term interest rate
implied by standard economic theory. Using information on output,
the inflation rate, and the short-term interest rate, they document
a downward trending estimate of r∗, which in the case of the U.S.
economy eventually falls close to zero. Their estimates have become
a staple in the economic and policy discussions of r∗, and updates are
regularly made publicly available.28 Nonetheless, numerous studies
have sought to improve the LW methodology and estimates.

Lewis and Vazquez-Grande (2019), Beyer and Wieland (2019),
Kiley (2020), and Brand and Mazelis (2019) are fairly recent exam-
ples of such work. For instance, all four papers use Bayesian meth-
ods rather than a multistep procedure likelihood-based estimator to
address the pile-up problem that often afflicts classical estimation
approaches.

Lewis and Vazquez-Grande (2019) also study the consequences of
assuming that the nongrowth component of r∗ is first-difference sta-
tionary (as in LW) rather than persistent but stationary. They argue
that a mixture of permanent and transitory processes to characterize
the natural rate of interest is preferable to the original specification
of LW. Their estimate is more procyclical and displays less of a
secular decline than the one shown in LW and HLW.

Beyer and Wieland (2019) argue that a large degree of uncer-
tainty surrounds the estimates of LW and that their methodology
and estimation methods are highly sensitive to the choice made
by the econometrician. They note the challenge of simultaneously
estimating many unobserved variables in a large state-space model.
For instance, they find that the precision of the estimates does not
increase even after adding more than one decade of data relative to
the original set of LW, which ended in 2002.

28See the Federal Reserve Bank of New York webpage “Measuring the Natural
Rate of Interest” at https://www.newyorkfed.org/research/policy/rstar.
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Kiley (2020) also points out the weak identification of the
natural rate of interest in the original LW setup. This observa-
tion motivates him to investigate possible ways to improve the
identification of r∗. He proposes to add an Okun’s law equa-
tion to the system and account for the role of additional demand
shifters (e.g., asset prices, fiscal policy, and credit conditions) in the
IS-curve equation. The addition of credit spreads is one factor that
significantly helps with improving the identification of r∗. Following
these changes, estimates of r∗ are more stable over time and do not
exhibit the same kind of gradual secular decline as shown by the LW
estimates.

Brand and Mazelis (2019) estimate a semi-structural model of
the U.S. economy featuring key elements of the LW model but
also a Taylor-type policy rule to better identify r∗. Their estimate
of the r∗ process for the U.S. is far more volatile than that of
LW and falls well below zero following the Great Recession. They
do not, however, account explicitly for the presence of the ELB
and assume instead that the observed short-term interest rate is
what would have prevailed under their rule, even in the absence of
the ELB.

The studies discussed so far in this section have adopted the
definition of r∗ from LW and mostly followed or investigated the
robustness of the assumptions of their model. However, economists
have also come up with different concepts and methodologies to
characterize the stance of monetary policy.

For instance, Christensen and Rudebusch (2019) employ flexible
dynamic term structure models and financial data (e.g., inflation-
indexed debt) to obtain estimates of the real rate that prevail, on
average, between the 5- to 10-year horizon window, once business
fluctuations have mostly faded. Their framework allows them to
compute an equilibrium rate without having to correctly specify the
dynamics of the output gap and inflation. The results show that
the natural rate of interest has gradually declined over the past two
decades to a level close to zero.

Another paper that computes a longer-run (i.e., five-year hori-
zon) measure of r∗ under a flexible approach is Lubik and Matthes
(2015). They estimate a time-varying vector autoregressive (TVP-
VAR) model, which imposes much fewer theoretical restrictions than
LW. Their measure of r∗ is the five-year conditional forecast of the
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observed real rate implied by this model. Although using a dif-
ferent approach, Lubik and Matthes estimate a path of r∗ that
is roughly consistent with that of LW starting around the mid-
1980s. Unsurprisingly, with few restrictions and time-varying coeffi-
cients, the degree of uncertainty around their estimates is relatively
large.

Cúrdia et al. (2015) argue that policy rules responding to the
efficient real interest rate characterize the evolution of the federal
funds rate since late 1987 better than traditional monetary pol-
icy rules based on estimates of the output gap.29 They refer to
the former as Wicksellian policy rules. It is worth noting that the
dynamics of their efficient interest rate—and hence their results—
are highly dependent on the model specifications and underlying
assumptions.

Del Negro et al. (2017) compare the measure of r∗ computed
from a low-frequency estimate of the short-term interest rate in a
VAR model with common trends to the efficient interest rate in a
version of the Federal Reserve Bank of New York DSGE model (see
Del Negro, Giannoni, and Schorfheide 2015). The two methodologies
deliver fairly consistent views regarding the gradual decline in the
short-term real interest rate observed over the past few decades.

There are two papers that are most closely related to ours. The
first is Johannsen and Mertens (2021). They propose a flexible time-
series approach that decomposes their data as trends and cycles
and explicitly accounts for the presence of the ELB by simulating a
shadow rate for the periods when the ELB is binding. They also allow
for stochastic volatility in the variance of some of the innovations.
However, and in contrast to our methodology, they do not identify
and infer the output gap based on the structure of their model and
the data. Instead, they take the CBO estimate as observed values.
The reliance on a reaction function in which the output gap is a
significant determinant of the monetary policy rate entails strong
identification linkages between the estimate of r∗, the shadow rate,
and the output gap. In our paper, we seek to capture the simultane-
ous directionality of these influences as well as to take into account

29The efficient real interest rate in a DSGE model is that which would prevail
in an economy in which prices are flexible and desired markups are zero.
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the contribution of the uncertainty around the output gap estimate
to the uncertainty surrounding the estimate of r∗

t .
The second paper is Zaman (2021). It is a comprehensive study of

a semi-structural model of the U.S. economy that shares many fea-
tures with our paper. The model is estimated by Bayesian methods,
includes information from survey data (see below) and specifies the
cyclical component of the short-term interest rate using a Taylor-
like policy rule. The paper also allows for time variation in some
of the parameter estimates, both in the variances of the innova-
tions (like our paper and Johannsen and Mertens 2021) and some
regression parameters. The main difference with our paper is that
Zaman (2021) does not sample a model-consistent distribution of
the shadow rate at the ELB but instead uses the series implied by
the model of Wu and Xia (2016) as an observable variable. It is also
worth noting that the reliance on survey data in the paper is far
more extensive than ours, as its data set may go as far as includ-
ing the long-run projections of the three-month Treasury bill, real
output growth, the unemployment rate, and GDP deflator inflation.
Lastly, and in contrast with Zaman’s approach, we use informa-
tion of the 10-year Treasury rate to directly inform our estimate
of r∗

t .
Finally, our paper relates to a strand of literature that deals

with the ELB and censoring of the federal funds rate in the estima-
tion of dynamic models with structural identification. For instance,
Mavroeidis (2021) and Aruoba et al. (2022) propose econometric
strategies to account for the censoring of the policy rate below the
ELB in the context of a (structural) VAR model. Both carry out
their analyses with a canonical three-equation characterization of
the U.S. economy. Mavroeidis relies on a maximum likelihood esti-
mator while Aruoba et al. carry out their estimation with Bayesian
methods. These papers focus on the identification and estimation
of the dynamic coefficients of the econometric system that allow
them to investigate possible magnitude changes in the response of
conventional monetary policy at the ELB, as well as the effective-
ness of unconventional monetary policy relative to its conventional
counterpart. Consistent with Johannsen and Mertens (2021), the
results indicate that the economy is in general more responsive to
monetary policy stimulus when the ELB is binding than when it
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is not. In contrast, our primary interest is the estimation of key
trends rather than the question of whether the dynamic of the
response of the economy to a monetary policy shock may change
when policy is constrained by the ELB. Another paper worth high-
lighting is Jones, Kulish, and Morley (2021), who perform their
analysis with a full structural DSGE model. In particular, they
assume full information rational expectation (FIRE), which likely
drives their estimate of the shadow rate being actually above the
ELB in the early periods of the 2008 financial crisis. FIRE is a very
strong assumption and is valid only to the extent it reflects the
data-generating process accurately. Being skeptical of the assump-
tion and more cautious, our model does not embed any kind of
structural foresight. In particular, there is no structural identi-
fication of explicit future innovations to monetary policy in our
setup.

Appendix B. Model in State-Space Form

The benchmark model is as follows:
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Appendix C. Data Details

Our sample initially covers the period 1962:Q1 to 2020:Q1. Later
on in the paper, we add observations up until 2023:Q1 as we parse
the data from the pandemic and its aftermath with a version of our
model. The information about each variable appears below:

• Real GDP: Inflation-adjusted value of the goods and services
produced by labor and property located in the United States,
billions of chained 2012 dollars, seasonally adjusted, annual
rate, quarterly frequency from the Federal Reserve Bank of
St. Louis FRED database.

• Unemployment rate: Number of unemployed as a percent-
age of the labor force, seasonally adjusted, monthly frequency
from the FRED database, transformed to quarterly frequency
by taking the average of the months in the quarter.

• Inflation rate: Annualized quarterly percentage change in the
chain-type price index of the personal consumption expendi-
tures excluding food and energy, seasonally adjusted, quar-
terly frequency from the FRED database.

• Federal funds rate: Effective federal funds rate calculated as
a volume-weighted median of overnight federal funds transac-
tions reported in the FR 2420 Report of Selected Money Mar-
ket Rates, percent, not seasonally adjusted, daily frequency
from the FRED database, transformed to quarterly frequency
by taking the average of the days in the quarter. We assume a
lower bound equal to 0.25 percent that binds between 2009:Q1
and 2015:Q4.

• Ten-year Treasury yield: Yield on the 10-year Treasury secu-
rity at constant maturity, percent, not seasonally adjusted,
daily frequency from the FRED database, transformed to
quarterly frequency by taking the average of the days in the
quarter.

• Inflation expectations (PTR): This is the Federal Reserve’s
perceived target rate of inflation used in the FRB/US model
(see Board of Governors 2022).

• Board of Governors of the Federal Reserve System output
gap estimate: Real-time estimates and projections of the out-
put gap used by the staff of the Board of Governors of the
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Federal Reserve System in constructing its Greenbook fore-
cast. Obtained from the Federal Reserve Bank of Philadelphia
Greenbook Data Sets.

• CBO potential output: The CBO’s estimate of the output the
economy would produce with a high rate of use of its capi-
tal and labor resources. The data are adjusted to remove the
effects of inflation. Obtained from the FRED database.

Appendix D. Gibbs Sampler Details

Let Θy = {θ1, θ2, β, κ, ρ, απ, αy, σ2
υ, σ2

ηπ , σ2
ηR , σ2

e} be the parameters
of the observation equations and Θx = {φ1, φ2, p

10, ψ1, ψ2, σ
2
ηy∗ , σ2

ν ,

σ2
ε , σ2

ηu∗ , σ2
ηπ∗ , σ2

ηr∗ , σ2
ε10 , σ2

ηp10}, the parameters of the transition
equations. Let yt be the vector of variables of the observa-
tion equation (B.1) and xt, the latent variables of the transi-
tion equation (B.2). The Gibbs sampler operates as follows:30 The

30Whenever we obtain a posterior draw of the coefficients of the linear regres-
sion model

Yt = X ′
tδ + ξt, ξt ∼ i.i.dN(0, σ2

ξ), t = 1, 2, . . . , T,

we use an independent normal-inverse-gamma posterior distribution with mean(
Σ−1 +

T∑
t=1

XtX
′
t/σ2

ξ

)−1 (
Σ−1μ +

T∑
t=1

XtYt/σ2
ξ

)

and variance (
Σ−1 +

T∑
t=1

XtX
′
t/σ2

ξ

)−1

,

with shape coefficient

aσ2
ξ

+ 0.5 ∗ T

and rate coefficient

bσ2
ξ

+ 0.5 ∗ ξ̂′ξ̂,

where ξ̂ is the vector of residuals conditional on the draw of δ, μ and Σ are
the prior mean and variance, respectively, of the normal prior distribution of
δ, whereas aσ2

ξ
and bσ2

ξ
are the prior shape and rate coefficients of the prior

inverse-gamma distribution of σ2
ξ .
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initialization of the Gibbs sampler consists in setting initial val-
ues for Θy and Θx. Moreover, the observations for the initial-
ization of the shadow rate (Rt) are obtained by drawing from
a Tobit model in which it = max{Rt, i}, with Rt = ρRt−1 +
(1 − ρ) (r∗ + π∗

t + απ (πt − π∗
t ) + αyct) + ηR

t and where r∗ is a con-
stant to be estimated, π∗

t = πe
t (PTR), and the rest of the regressors

are data on the federal funds rate, the PCE core inflation rate, and
the CBO’s estimate of the output gap. By construction, this initial
step yields a shadow rate that is below the ELB during the periods
it is binding.

1. Use the Durbin and Koopman (2002) simulator smoother to
obtain a random draw of the latent variables, {xt}T

t=1, using
the state-space system in Appendix B.

2. Using the simulated values of Yt = ct and Xt =
[ct−1, ct−2, c

10
t−1, c

10
t−2]

′, sample φ1, φ2, λ1, λ2, and σ2
ηR from

a truncated (to ensure covariance stationarity) independent
normal-inverse-gamma posterior distribution.

3. Sample y∗
0 , μ0, u∗

0, r∗
0 , π∗

0 , and p10 using a normal distribu-
tion with posterior mean σ2

x0
(x̄0/s2

x0
+ x1/σ2

ηx) and posterior
variance σ2

x0
= 1/(1/s2

x0
+ 1/σ2

ηx), for x = y∗, μ, u∗, r∗, π∗,
and p10, where x̄0 and s2

x0
are the prior mean and variance,

respectively.

4. Sample σ2
ηx for x = y∗, u∗, π∗, and p10 from an inverse-gamma

distribution with shape coefficient aσ2
ηx

+ 0.5 ∗ T and rate
coefficient bσ2

ηx
+ 0.5 ∗ η̂xᵀη̂x, where η̂x is the vector of resid-

uals obtained from xt − xt−1, t = 1, 2, . . . , T , and aσ2
ηx

and
bσ2

ηx
are the prior shape and rate coefficients.

5. Sample σ2
ημ , σ2

ηr∗ , and ωηr∗,ημ from an inverse-Wishart distri-

bution with scale matrix
∑T

t=1 v̂tv̂ ′
t +ν0 ×Σημ,ηr∗

0 and degrees
of freedom T + ν0, where (i) ν0 and Σημ,ηr∗

0 are the prior
degrees of freedom and variance-covariance matrix between
ημ and ηr∗, respectively, (ii) v̂t = [η̂μ

t , η̂r∗

t ]′ is a vector of
residuals, and (iii) η̂μ

t = μt − μt−1 and η̂r∗

t = r∗
t − r∗

t−1.
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6. Using the simulated values of π∗
t , obtain êt = πe

t − π∗
t to

sample σ2
e from an inverse-gamma distribution with shape

aσ2
e

+ 0.5 ∗ T and rate bσ2
e

+ 0.5 ∗ ê′ê, where aσ2
e

and bσ2
e

are
the prior shape and rate coefficients, respectively.

7. Using the observed and simulated values of Yt = ut − u∗
t

and Xt = [ct, ct−1, ct−2]′, sample θ1, θ2, and σ2
υ from an

independent normal-inverse-gamma distribution.

8. Using the observed values for Yt = πt − πt−1 and observed
and simulated values for Xt = [π∗

t − πt−1, ct]′, sample β,
κ, and σ2

ηπ from a truncated (to ensure homogeneity and
positiveness) independent normal-inverse-gamma posterior
distribution.

9. Using the observed and simulated values of Xt = [Rt−1, r
∗
t +

π∗
t , π̄t − π∗

t , ct]′, generate Rt for t in the set of ELB
periods from a truncated (from above at 0.25) normal
distribution with mean X ′

tδ, where δ = [ρ, (1 − ρ),
(1 − ρ)απ, (1 − ρ)αy]′, and variance σ2

ηR . Set Yt = [Rt −
r∗
t − π∗

t , c10
t ]′, Xt = [Rt−1 − r∗

t − π∗
t , π̄t − π∗

t , ct]′, and Zt =
[c10

t−1, c
10
t−2]

′. Notice that Rt takes the place of it only during

ELB periods. Set Ω =
[

σ2
ηR ωηR,ε10σηRσε10

ωηR,ε10σηRσε10 σ2
ε10

]
and

Wt =
[
Xt 0
0 Zt

]
. Draw ρ, (1 − ρ)(απ − 1), (1 − ρ)αy, ψ1, and

ψ2 from a truncated normal posterior distribution (to ensure
covariance stationarity and the Taylor principle) with mean
(Σ−1

0 +
∑T

t=1 WtΩ−1W ′
t)

−1(Σ−1
0 δ0+

∑T
t=1 WtΩ−1Yt) and vari-

ance (Σ−1
0 +

∑T
t=1 WtΩ−1W ′

t)
−1, where δ0 and Σ−1

0 are the
prior mean and variance, respectively, of the parameters to
be drawn.

10. Sample σ2
ηR , σ2

ε10 , and ωηR,ε10 from an inverse-Wishart distri-

bution with scale matrix
∑T

t=1 v̂tv̂ ′
t +ν0 ×ΣηR,ε10

0 and degrees

of freedom T + ν0, where (i) ν0 and ΣηR,εc10

0 are the prior
degrees of freedom and variance-covariance matrix between
ηR and ε10, respectively, (ii) v̂t = [η̂R

t , ε̂10
t ]′ is a vector of
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residuals, and (iii) η̂R
t and ε̂10

t are the residuals of the shadow
and long rate equations, respectively.

11. With the newly generated Rt, initiate a new iteration by going
back to step 1.

Appendix E. Prior Distributions

Table E.1 presents the prior distributions and their hyperparameters
in the second column. The hyperparameters of the prior distributions
associated with output and the unemployment rate are informed
by the relatively standard results in the literature of trend-cycle
decompositions (see Clark 1989; González-Astudillo and Roberts
2022, for example). With respect to inflation, Basistha and Nelson
(2007) estimate the coefficient linked to inflation expectations to be
between roughly 0.8 and 0.9, Chan and Grant (2017) estimate a pos-
terior mean close to 0.7, and Blanchard (2016)—in a time-varying
setting—estimates a sample average close to 0.6; we take a somewhat
more conservative stance and set the prior mean of the persistence
coefficient equal to 0.5. We also use the estimates from Blanchard
to center our prior for the slope of the Phillips curve at 0.2. The
variance of the inflation equation is centered at the estimated value
in Basistha and Nelson (2007), whereas that of the inflation trend
is centered close to the upper bound of the estimates in Stock and
Watson (2007). The standard deviation of the measurement equation
of inflation expectations is centered at 0.5 to allow for discrepan-
cies between the data about inflation expectations and the inflation
trend; we have not been able to find results in the literature that
allow us to better inform our choice.

Regarding the monetary policy rule, we center the prior means
of its parameters following the calibration of the FRB/US model
(see Brayton, Laubach, and Reifschneider 2014), as well as para-
meter estimates of an inertial version of the Taylor (1993) rule that
take into account the ELB and endogeneity, as in González-Astudillo
(2018). The shock to r∗ has a variance whose prior distribution is
centered at a value close to the estimates in Kiley (2020). For the cor-
relation coefficient between output growth and interest rate trends,
we assume an inverse-Wishart prior distribution with 4 degrees of
freedom centered at the implied estimate from HLW. In terms of
the long interest rate, we choose prior means such that the cycle
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Table E.1. Estimates of the Benchmark Model

Prior Distribution Posterior Mean 68% Credibility Interval

φ1 N(1.5,1) 1.54 [1.44, 1.64]
φ2 N(–0.6,1) –0.58 [–0.68, –0.49]
λ1 N(0.05,1) –0.50 [–0.66, –0.33]
λ2 N(0.05,1) 0.15 [–0.02, 0.33]
σ2

ε IG(2,0.36) 0.15 [0.11, 0.18]
σ2

ηy∗ IG(2,0.49) 0.29 [0.26, 0.33]

σ2
ημ IW(0.032,4) 0.032 [0.022, 0.042]

θ1 N(–0.25,0.5) –0.35 [–0.39, –0.30]
θ2 N(–0.25,0.5) –0.19 [–0.23, –0.15]
σ2

ηu∗ IG(2,0.04) 0.01 [0.01, 0.02]

σ2
υ IG(2,0.01) 0.002 [0.002, 0.003]

β N(0.5,1) 0.26 [0.21, 0.30]
κ N(0.2,0.5) 0.07 [0.05, 0.09]
σ2

ηπ IG(2,1) 0.64 [0.58, 0.70]

σ2
ηπ∗ IG(2,1) 0.03 [0.03, 0.04]

σ2
e IG(2,0.25) 0.01 [0.01, 0.01]

ρ N(0.85,0.1) 0.71 [0.68, 0.75]
απ N(1.5,0.5) 1.29 [1.13, 1.45]
αy N(1,0.5) 0.93 [0.80, 1.06]
σ2

ηR IW(1,4) 0.11 [0.09, 0.13]

σ2
ηr∗ IG(4,0.01) 0.08 [0.06, 0.10]

ψ1 N(1.5,1) 1.02 [0.90, 1.15]
ψ2 N(–0.6,1) –0.21 [–0.33, –0.10]
σ2

ε10 IW(1,4) 0.10 [0.09, 0.12]

σ2
ηp10 IG(2,0.01) 0.006 [0.003, 0.010]

y∗
0 N(816.1,5) 814.64 [813.21, 816.15]

μ0 N(1.2,0.5) 0.98 [0.84, 1.11]
u∗
0 N(5.8,1) 6.50 [5.77, 7.21]

r∗
0 N(1.2,1) 1.74 [0.55, 2.92]

π∗
0 N(1.7,1) 1.69 [1.48, 1.89]

p10
0 N(1.4,1) 0.57 [–0.57, 1.69]

ωηr∗
,ημ IW(0.6,4) 0.50 [0.21, 0.75]

ωηR,ε10 IW(0.21,4) 0.05 [–0.06, 0.16]

Note: “N” stands for normal distribution, “IG” stands for inverse-gamma distribution,
and “IW” stands for inverse-Wishart distribution. In the normal, the first parameter is
the mean and the second is the standard deviation. In the inverse-gamma, the first is the
shape coefficient, denoted a, and the second is the scale, denoted b; the mean of the dis-
tribution is b/(a − 1) and the variance is b2/((a − 1)2(a − 2)). In the inverse-Wishart, the
first parameter is the mean of the distribution of the variance or the correlation coefficient
(depending on the parameter) and the second, the degrees of freedom. Strictly speaking,
we produce draws of the covariance between shocks.
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has a hump shape and an average yield equal to that in the sam-
ple; the variance of the disturbance is centered at 1, for the lack
of information in the literature. Nevertheless, the hyperparameters
of the inverse-gamma prior distributions of the variances are such
that only their means are well defined, whereas their variances are
not, which allows the estimation to more freely pick up the poste-
rior means of these coefficients. Additionally, the means of the prior
distributions of the initial values of the nonstationary latent factors
are set in accordance with the initial values of the relevant vari-
ables in the sample (we use the term premium series from Adrian,
Crump, and Moench 2013 to initialize p10

t ). Finally, the correlation
coefficient between trend output growth and r∗ is centered at 0.6,
derived from the results in Laubach and Williams (2003), whereas
the correlation coefficient between the shadow interest rate and the
cycle of the 10-year Treasury yield is centered at 0.21, which is the
correlation coefficient between the policy news shock in Nakamura
and Steinsson (2018) and the change in the nominal yield of the
zero-coupon 10-year Treasury bond.

Appendix F. Parameter Diagnostics

Figures F.1, F.2, and F.3 show the prior and posterior distributions
of the parameters of the benchmark model.

Figure F.1. Prior and Posterior Distributions:
Conditional Mean Parameters
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Figure F.2. Prior and Posterior Distributions:
Variance Parameters
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Figure F.3. Prior and Posterior Distributions:
Variance and Correlation Parameters
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Appendix G. Data Decomposition

This appendix shows the inflation gap, defined as the difference
between actual and trend inflation, in Figure G.1 and the historical
data decomposition of the output gap in Figure G.2.

Figure G.1. Inflation Gap

Note: Shaded vertical areas indicate NBER recession periods. Smoothed esti-
mates are reported. The inflation gap is defined as the posterior mean of πt −π∗

t .

Figure G.2. Historical Data
Decomposition of the Output Gap

Note: The contributions of GDP and the unemployment rate (GDP + Unem-
ployment rate) have been added together. The same is true for the inflation rate
and PTR (Inflation + Inflation expectations), and for the federal funds rate and
the 10-year Treasury yield (Interest rates).
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Appendix H. Impulse Response Analysis

Beside the structural dynamics and constraints imposed on some of
the coefficients, the correlation between the policy equation innova-
tion, ηR∗

t , and that of the long-term interest rate gap, ε10
t , entails an

influence of the former on the rest of the economy. As explained in
Section 2.4, without this feature and in the absence of any explicit
role for expectations, policy rate innovations would have no bearing
on real activity and inflation. The correlated innovations allow us to
mimic the effects of a conventional monetary policy shock.

The impulse response functions of an increase of 100 basis points
(bps) in the federal funds rate are depicted in Figure H.1A. Our
model predicts that the 10-year Treasury yield would increase 5 bps
on impact and would then decline, causing the output gap to decline
by almost 14 bps at the trough with the inflation rate declining about
3 bps. The sizes of these responses are similar to those obtained in the
FRB/US model with model-consistent expectations (see Brayton,
Laubach, and Reifschneider 2014; Laforte and Roberts 2014).

The structure of the model allows us to treat and interpret the
cyclical component of the 10-year Treasury yield as a proxy for for-
ward guidance or asset purchases by the central bank (i.e., uncon-
ventional monetary policy). Given a shock of 100 bps to this cyclical
component of long rate, output declines 2.5 percentage points (pp)
at the trough and inflation, 0.6 pp, followed by a decline in the fed-
eral funds rate of 2.5 pp, as shown in Figure H.1B. These effects
are much larger than those obtained with the FRB/US model, for
instance, after an increase of 100 bps in term premiums as shown in
Laforte and Roberts (2014).

The structural character of our model is, however, limited. For
instance, a direct innovation to the inflation process will have no
repercussion on the rest of the economy for reasons explained ear-
lier. Nonetheless, it is possible to gauge the dynamics of our model
from its “multipliers,” i.e., the magnitude of the response of a given
process/variable to a change in a particular economic factor (which
is not necessarily a fundamental shock of the model), a practice well-
established in the business of professional forecasting. For instance,
it is common to be interested in how much inflation will react to a
change in economic conditions, like in the output gap.
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Figure H.1. Impulse-Response Functions

(continued)
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Figure H.1. (Continued)

We can perform such an exercise with our model. Figure H.1C
shows that inflation will have a peak increase of about 0.4 pp and the
federal funds rate would peak at around 1.7 pp, following a 1 per-
cent increase of output above potential. This is because there is no
connection between the 10-year Treasury yield and the federal funds
rate beyond the correlation between their shocks, and as explained
earlier, the former does not move despite the increase in the latter.

Appendix I. Stochastic Volatility Results

This section presents the results of the estimation that includes sto-
chastic volatility. Figure I.1 shows the estimated stochastic volatility
process through 2023:Q1 in which the missing observations approach
was implemented.

Figure I.2A shows that taking the most extreme observations at
face value rather than as being missing, our estimate of the output
gap reached about –21 percent in the second quarter of 2020 com-
pared with the CBO’s –11 percent, whereas the natural unemploy-
ment rate (Figure I.2B) did not suffer any significant break despite
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Figure I.1. Estimated Stochastic
Volatilities for Each Shock

Figure I.2. Parsing of the COVID-19 Pandemic Period

Note: Shaded vertical areas indicate NBER recession periods. Smoothed esti-
mates are reported.
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the increase in the actual unemployment rate (hence the massive
slack estimate, given the Okun’s law relationship in our model); u∗

is estimated to be 4.2 percent at the end of the sample.
Figure I.2D shows the federal funds rate along with its shadow

and equilibrium counterparts while Figure I.2C shows r∗
t . The results

indicate that the equilibrium policy rate was below 1 percent during
the early stage of the pandemic period and has increased since then,
standing at 2.8 percent in early 2023. Of note, the estimates of r∗

t

with and without missing observations are practically identical.

Appendix J. Pseudo-Real-Time Estimates
of the Output Gap and r∗

t

Figures J.1 and J.2 show the pseudo-real-time mean estimates of
the output gap and r∗

t for five of our models. For each model, the
estimated value shown in period t corresponds to the estimate at
the end of the sample for the vintage whose date of the last obser-
vation is period t, i.e., the value obtained from conditioning solely
on data through period t. For example, the output gap estimate in
2017:Q1 is the last implied value by the model estimated with the
sample through 2017:Q1. Estimates are calculated for each model

Figure J.1. Pseudo-Real-Time Estimates
of the Output Gap across Models

Note: Shaded vertical area indicates NBER recession period.
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Figure J.2. Pseudo-Real-Time Estimates
of r∗

t across Models

Note: Shaded vertical area indicates NBER recession period.

over their respective posterior distribution of the parameters. The
gray area shows the 68 percent credibility interval of the baseline
model estimated with the whole sample through 2020:Q1.
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Cúrdia, V., A. Ferrero, G. C. Ng, and A. Tambalotti. 2015. “Has U.S.
Monetary Policy Tracked the Efficient Interest Rate?” Journal
of Monetary Economics 70 (March): 72–83.

Del Negro, M., D. Giannone, M. Giannoni, and A. Tambalotti. 2017.
“Safety, Liquidity, and the Natural Rate of Interest.” Brookings
Papers on Economic Activity 48 (Spring): 235–316.

Del Negro, M., M. Giannoni, and F. Schorfheide. 2015. “Inflation
in the Great Recession and New Keynesian Models.” American
Economic Journal: Macroeconomics 7 (1): 168–96.

Durbin, J., and S. J. Koopman. 2002. “A Simple and Efficient Sim-
ulation Smoother for State Space Time Series Analysis.” Bio-
metrika 89 (3): 603–16.
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González-Astudillo, M. 2018. “Identifying the Stance of Monetary
Policy at the Zero Lower Bound: A Markov-Switching Estimation
Exploiting Monetary-Fiscal Policy Interdependence.” Journal of
Money, Credit and Banking 50 (1): 115–54.
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